MakeItFrom.com
Menu (ESC)

5049 Aluminum vs. Grade CW12MW Nickel

5049 aluminum belongs to the aluminum alloys classification, while grade CW12MW nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5049 aluminum and the bottom bar is grade CW12MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 2.0 to 18
4.6
Fatigue Strength, MPa 79 to 130
130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 210 to 330
560
Tensile Strength: Yield (Proof), MPa 91 to 280
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 620
1560
Specific Heat Capacity, J/kg-K 900
410
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.5
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0 to 31
22
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 570
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 22 to 34
17
Strength to Weight: Bending, points 29 to 39
17
Thermal Shock Resistance, points 9.3 to 15
16

Alloy Composition

Aluminum (Al), % 94.7 to 97.9
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.3
15.5 to 17.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
4.5 to 7.5
Magnesium (Mg), % 1.6 to 2.5
0
Manganese (Mn), % 0.5 to 1.1
0 to 1.0
Molybdenum (Mo), % 0
16 to 18
Nickel (Ni), % 0
49.2 to 60.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
3.8 to 5.3
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0