MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. AISI 316 Stainless Steel

5050 aluminum belongs to the aluminum alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
160 to 360
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 22
8.0 to 55
Fatigue Strength, MPa 45 to 100
210 to 430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 91 to 140
350 to 690
Tensile Strength: Ultimate (UTS), MPa 140 to 250
520 to 1180
Tensile Strength: Yield (Proof), MPa 50 to 210
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
590
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 630
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Calomel Potential, mV -760
-50
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.4
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
130 to 1820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 15 to 26
18 to 41
Strength to Weight: Bending, points 22 to 33
18 to 31
Thermal Diffusivity, mm2/s 79
4.1
Thermal Shock Resistance, points 6.3 to 11
11 to 26

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
62 to 72
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants