MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. AISI 439 Stainless Steel

5050 aluminum belongs to the aluminum alloys classification, while AISI 439 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
160
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 22
23
Fatigue Strength, MPa 45 to 100
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 91 to 140
310
Tensile Strength: Ultimate (UTS), MPa 140 to 250
490
Tensile Strength: Yield (Proof), MPa 50 to 210
250

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
890
Melting Completion (Liquidus), °C 650
1510
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
25
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 170
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Calomel Potential, mV -760
-220
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.4
2.3
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1190
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
95
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 15 to 26
18
Strength to Weight: Bending, points 22 to 33
18
Thermal Diffusivity, mm2/s 79
6.7
Thermal Shock Resistance, points 6.3 to 11
16

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0 to 0.15
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
77.1 to 82.8
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.1
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0