MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. AWS E70C-Ni2

5050 aluminum belongs to the aluminum alloys classification, while AWS E70C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is AWS E70C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.7 to 22
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 140 to 250
560
Tensile Strength: Yield (Proof), MPa 50 to 210
450

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
52
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1190
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
140
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 26
20
Strength to Weight: Bending, points 22 to 33
19
Thermal Diffusivity, mm2/s 79
14
Thermal Shock Resistance, points 6.3 to 11
17

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.7
94.1 to 98.3
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.3
Nickel (Ni), % 0
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5