MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. EN 1.4547 Stainless Steel

5050 aluminum belongs to the aluminum alloys classification, while EN 1.4547 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is EN 1.4547 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
230
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 22
39
Fatigue Strength, MPa 45 to 100
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 91 to 140
510
Tensile Strength: Ultimate (UTS), MPa 140 to 250
750
Tensile Strength: Yield (Proof), MPa 50 to 210
340

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1090
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 190
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.4
5.6
Embodied Energy, MJ/kg 150
75
Embodied Water, L/kg 1190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
240
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 26
26
Strength to Weight: Bending, points 22 to 33
23
Thermal Diffusivity, mm2/s 79
3.8
Thermal Shock Resistance, points 6.3 to 11
16

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
19.5 to 20.5
Copper (Cu), % 0 to 0.2
0.5 to 1.0
Iron (Fe), % 0 to 0.7
51 to 56.3
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0