5050 Aluminum vs. EN 1.4567 Stainless Steel
5050 aluminum belongs to the aluminum alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.
For each property being compared, the top bar is 5050 aluminum and the bottom bar is EN 1.4567 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 36 to 68 | |
190 to 240 |
Elastic (Young's, Tensile) Modulus, GPa | 68 | |
190 |
Elongation at Break, % | 1.7 to 22 | |
22 to 51 |
Fatigue Strength, MPa | 45 to 100 | |
190 to 260 |
Poisson's Ratio | 0.33 | |
0.28 |
Shear Modulus, GPa | 26 | |
76 |
Shear Strength, MPa | 91 to 140 | |
390 to 490 |
Tensile Strength: Ultimate (UTS), MPa | 140 to 250 | |
550 to 780 |
Tensile Strength: Yield (Proof), MPa | 50 to 210 | |
200 to 390 |
Thermal Properties
Latent Heat of Fusion, J/g | 400 | |
290 |
Maximum Temperature: Mechanical, °C | 180 | |
930 |
Melting Completion (Liquidus), °C | 650 | |
1410 |
Melting Onset (Solidus), °C | 630 | |
1370 |
Specific Heat Capacity, J/kg-K | 900 | |
480 |
Thermal Conductivity, W/m-K | 190 | |
11 |
Thermal Expansion, µm/m-K | 24 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 50 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 170 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 9.5 | |
16 |
Density, g/cm3 | 2.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 8.4 | |
3.1 |
Embodied Energy, MJ/kg | 150 | |
43 |
Embodied Water, L/kg | 1190 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 4.1 to 24 | |
150 to 220 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 18 to 330 | |
100 to 400 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 50 | |
25 |
Strength to Weight: Axial, points | 15 to 26 | |
19 to 27 |
Strength to Weight: Bending, points | 22 to 33 | |
19 to 24 |
Thermal Diffusivity, mm2/s | 79 | |
3.0 |
Thermal Shock Resistance, points | 6.3 to 11 | |
12 to 17 |
Alloy Composition
Aluminum (Al), % | 96.3 to 98.9 | |
0 |
Carbon (C), % | 0 | |
0 to 0.040 |
Chromium (Cr), % | 0 to 0.1 | |
17 to 19 |
Copper (Cu), % | 0 to 0.2 | |
3.0 to 4.0 |
Iron (Fe), % | 0 to 0.7 | |
63.3 to 71.5 |
Magnesium (Mg), % | 1.1 to 1.8 | |
0 |
Manganese (Mn), % | 0 to 0.1 | |
0 to 2.0 |
Nickel (Ni), % | 0 | |
8.5 to 10.5 |
Nitrogen (N), % | 0 | |
0 to 0.1 |
Phosphorus (P), % | 0 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.4 | |
0 to 1.0 |
Sulfur (S), % | 0 | |
0 to 0.015 |
Zinc (Zn), % | 0 to 0.25 | |
0 |
Residuals, % | 0 to 0.15 | |
0 |