MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. EN 1.4818 Stainless Steel

5050 aluminum belongs to the aluminum alloys classification, while EN 1.4818 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is EN 1.4818 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
180
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 22
40
Fatigue Strength, MPa 45 to 100
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 91 to 140
480
Tensile Strength: Ultimate (UTS), MPa 140 to 250
700
Tensile Strength: Yield (Proof), MPa 50 to 210
330

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1050
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 630
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 190
17
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.4
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
230
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 15 to 26
25
Strength to Weight: Bending, points 22 to 33
23
Thermal Diffusivity, mm2/s 79
4.5
Thermal Shock Resistance, points 6.3 to 11
15

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 20
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
65.6 to 71.8
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0