MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. EN 1.4887 Stainless Steel

5050 aluminum belongs to the aluminum alloys classification, while EN 1.4887 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
170
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 22
45
Fatigue Strength, MPa 45 to 100
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 91 to 140
400
Tensile Strength: Ultimate (UTS), MPa 140 to 250
580
Tensile Strength: Yield (Proof), MPa 50 to 210
300

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 630
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 170
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.4
6.7
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1190
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
220
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 26
20
Strength to Weight: Bending, points 22 to 33
19
Thermal Diffusivity, mm2/s 79
3.2
Thermal Shock Resistance, points 6.3 to 11
14

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
20 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
34.2 to 45
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
33 to 37
Niobium (Nb), % 0
1.0 to 1.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0