MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. EN 1.7703 Steel

5050 aluminum belongs to the aluminum alloys classification, while EN 1.7703 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.7 to 22
20
Fatigue Strength, MPa 45 to 100
320 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 91 to 140
420 to 430
Tensile Strength: Ultimate (UTS), MPa 140 to 250
670 to 690
Tensile Strength: Yield (Proof), MPa 50 to 210
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.4
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1190
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
570 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 26
24
Strength to Weight: Bending, points 22 to 33
22
Thermal Diffusivity, mm2/s 79
11
Thermal Shock Resistance, points 6.3 to 11
19 to 20

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0 to 0.1
2.0 to 2.5
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 0 to 0.7
94.6 to 96.4
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0