MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. Grade N12MV Nickel

5050 aluminum belongs to the aluminum alloys classification, while grade N12MV nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is grade N12MV nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 1.7 to 22
6.8
Fatigue Strength, MPa 45 to 100
130
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 140 to 250
600
Tensile Strength: Yield (Proof), MPa 50 to 210
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 650
1620
Melting Onset (Solidus), °C 630
1570
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 24
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
9.2
Embodied Carbon, kg CO2/kg material 8.4
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1190
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
34
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 15 to 26
18
Strength to Weight: Bending, points 22 to 33
17
Thermal Shock Resistance, points 6.3 to 11
19

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
0 to 1.0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
4.0 to 6.0
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
60.2 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0