MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. Grade Ti-Pd7B Titanium

5050 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd7B titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is grade Ti-Pd7B titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 36 to 68
180
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.7 to 22
17
Fatigue Strength, MPa 45 to 100
200
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 140 to 250
390
Tensile Strength: Yield (Proof), MPa 50 to 210
310

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 630
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 190
22
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 170
7.1

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.4
49
Embodied Energy, MJ/kg 150
840
Embodied Water, L/kg 1190
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
62
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 15 to 26
24
Strength to Weight: Bending, points 22 to 33
26
Thermal Diffusivity, mm2/s 79
8.9
Thermal Shock Resistance, points 6.3 to 11
30

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.2
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0
98.8 to 99.9
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4