MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. C28500 Muntz Metal

5050 aluminum belongs to the aluminum alloys classification, while C28500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 1.7 to 22
20
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
40
Shear Strength, MPa 91 to 140
320
Tensile Strength: Ultimate (UTS), MPa 140 to 250
520
Tensile Strength: Yield (Proof), MPa 50 to 210
380

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
110
Melting Completion (Liquidus), °C 650
900
Melting Onset (Solidus), °C 630
890
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 190
100
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
29
Electrical Conductivity: Equal Weight (Specific), % IACS 170
33

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
94
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
700
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 15 to 26
18
Strength to Weight: Bending, points 22 to 33
18
Thermal Diffusivity, mm2/s 79
33
Thermal Shock Resistance, points 6.3 to 11
17

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
57 to 59
Iron (Fe), % 0 to 0.7
0 to 0.35
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.4
0
Zinc (Zn), % 0 to 0.25
39.5 to 43
Residuals, % 0
0 to 0.9