MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. N06975 Nickel

5050 aluminum belongs to the aluminum alloys classification, while N06975 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 22
45
Fatigue Strength, MPa 45 to 100
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 91 to 140
470
Tensile Strength: Ultimate (UTS), MPa 140 to 250
660
Tensile Strength: Yield (Proof), MPa 50 to 210
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 630
1380
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.4
8.9
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
240
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 26
22
Strength to Weight: Bending, points 22 to 33
20
Thermal Shock Resistance, points 6.3 to 11
18

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
23 to 26
Copper (Cu), % 0 to 0.2
0.7 to 1.2
Iron (Fe), % 0 to 0.7
10.2 to 23.6
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.7 to 1.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0