MakeItFrom.com
Menu (ESC)

5051A Aluminum vs. ASTM A182 Grade F5a

5051A aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F5a belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5051A aluminum and the bottom bar is ASTM A182 grade F5a.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 18 to 21
25
Fatigue Strength, MPa 51 to 61
380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 110
450
Tensile Strength: Ultimate (UTS), MPa 170
710
Tensile Strength: Yield (Proof), MPa 56
520

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
510
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1190
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 27
160
Resilience: Unit (Modulus of Resilience), kJ/m3 23
700
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 17 to 18
25
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 63
11
Thermal Shock Resistance, points 7.6
20

Alloy Composition

Aluminum (Al), % 96.1 to 98.6
0
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.3
4.0 to 6.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.45
91.4 to 95.6
Magnesium (Mg), % 1.4 to 2.1
0
Manganese (Mn), % 0 to 0.25
0 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0