MakeItFrom.com
Menu (ESC)

5051A Aluminum vs. AWS E410

5051A aluminum belongs to the aluminum alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5051A aluminum and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 18 to 21
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 170
580
Tensile Strength: Yield (Proof), MPa 56
440

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
28
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 27
120
Resilience: Unit (Modulus of Resilience), kJ/m3 23
500
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 17 to 18
21
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 63
7.5
Thermal Shock Resistance, points 7.6
16

Alloy Composition

Aluminum (Al), % 96.1 to 98.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.3
11 to 13.5
Copper (Cu), % 0 to 0.050
0 to 0.75
Iron (Fe), % 0 to 0.45
82.2 to 89
Magnesium (Mg), % 1.4 to 2.1
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0