MakeItFrom.com
Menu (ESC)

5051A Aluminum vs. EN 1.8516 Steel

5051A aluminum belongs to the aluminum alloys classification, while EN 1.8516 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5051A aluminum and the bottom bar is EN 1.8516 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 18 to 21
11
Fatigue Strength, MPa 51 to 61
570
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 110
660
Tensile Strength: Ultimate (UTS), MPa 170
1100
Tensile Strength: Yield (Proof), MPa 56
910

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
470
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1190
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 27
120
Resilience: Unit (Modulus of Resilience), kJ/m3 23
2190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 17 to 18
39
Strength to Weight: Bending, points 25
30
Thermal Diffusivity, mm2/s 63
10
Thermal Shock Resistance, points 7.6
32

Alloy Composition

Aluminum (Al), % 96.1 to 98.6
0
Carbon (C), % 0
0.2 to 0.27
Chromium (Cr), % 0 to 0.3
3.0 to 3.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.45
94.6 to 96.1
Magnesium (Mg), % 1.4 to 2.1
0
Manganese (Mn), % 0 to 0.25
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0