MakeItFrom.com
Menu (ESC)

5051A Aluminum vs. EN AC-43500 Aluminum

Both 5051A aluminum and EN AC-43500 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5051A aluminum and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 18 to 21
4.5 to 13
Fatigue Strength, MPa 51 to 61
62 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 170
220 to 300
Tensile Strength: Yield (Proof), MPa 56
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
550
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 610
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
38
Electrical Conductivity: Equal Weight (Specific), % IACS 130
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.5
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 27
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 23
130 to 200
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 17 to 18
24 to 33
Strength to Weight: Bending, points 25
32 to 39
Thermal Diffusivity, mm2/s 63
60
Thermal Shock Resistance, points 7.6
10 to 14

Alloy Composition

Aluminum (Al), % 96.1 to 98.6
86.4 to 90.5
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.050
0 to 0.050
Iron (Fe), % 0 to 0.45
0 to 0.25
Magnesium (Mg), % 1.4 to 2.1
0.1 to 0.6
Manganese (Mn), % 0 to 0.25
0.4 to 0.8
Silicon (Si), % 0 to 0.3
9.0 to 11.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.070
Residuals, % 0
0 to 0.15