MakeItFrom.com
Menu (ESC)

5051A Aluminum vs. EN AC-46000 Aluminum

Both 5051A aluminum and EN AC-46000 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5051A aluminum and the bottom bar is EN AC-46000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 18 to 21
1.0
Fatigue Strength, MPa 51 to 61
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 170
270
Tensile Strength: Yield (Proof), MPa 56
160

Thermal Properties

Latent Heat of Fusion, J/g 400
530
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 610
530
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 150
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
26
Electrical Conductivity: Equal Weight (Specific), % IACS 130
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.5
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 27
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 23
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 17 to 18
26
Strength to Weight: Bending, points 25
33
Thermal Diffusivity, mm2/s 63
42
Thermal Shock Resistance, points 7.6
12

Alloy Composition

Aluminum (Al), % 96.1 to 98.6
79.7 to 90
Chromium (Cr), % 0 to 0.3
0 to 0.15
Copper (Cu), % 0 to 0.050
2.0 to 4.0
Iron (Fe), % 0 to 0.45
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 1.4 to 2.1
0.050 to 0.55
Manganese (Mn), % 0 to 0.25
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0 to 0.3
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 1.2
Residuals, % 0
0 to 0.25