MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. 5019 Aluminum

Both 5052 aluminum and 5019 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.1 to 22
2.2 to 18
Fatigue Strength, MPa 66 to 140
100 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 180
170 to 210
Tensile Strength: Ultimate (UTS), MPa 190 to 320
280 to 360
Tensile Strength: Yield (Proof), MPa 75 to 280
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 610
540
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
29
Electrical Conductivity: Equal Weight (Specific), % IACS 120
98

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 19 to 33
29 to 38
Strength to Weight: Bending, points 27 to 38
35 to 42
Thermal Diffusivity, mm2/s 57
52
Thermal Shock Resistance, points 8.3 to 14
13 to 16

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
91.5 to 95.3
Chromium (Cr), % 0.15 to 0.35
0 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 2.2 to 2.8
4.5 to 5.6
Manganese (Mn), % 0 to 0.1
0.1 to 0.6
Silicon (Si), % 0 to 0.25
0 to 0.4
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants