MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. 6182 Aluminum

Both 5052 aluminum and 6182 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 1.1 to 22
6.8 to 13
Fatigue Strength, MPa 66 to 140
63 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 180
140 to 190
Tensile Strength: Ultimate (UTS), MPa 190 to 320
230 to 320
Tensile Strength: Yield (Proof), MPa 75 to 280
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 610
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
160
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 19 to 33
23 to 32
Strength to Weight: Bending, points 27 to 38
30 to 38
Thermal Diffusivity, mm2/s 57
65
Thermal Shock Resistance, points 8.3 to 14
10 to 14

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
95 to 97.9
Chromium (Cr), % 0.15 to 0.35
0 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 2.2 to 2.8
0.7 to 1.2
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Silicon (Si), % 0 to 0.25
0.9 to 1.3
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15