MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. ACI-ASTM CD4MCuN Steel

5052 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD4MCuN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is ACI-ASTM CD4MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 22
18
Fatigue Strength, MPa 66 to 140
340
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 190 to 320
770
Tensile Strength: Yield (Proof), MPa 75 to 280
550

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
3.5
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
130
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 19 to 33
28
Strength to Weight: Bending, points 27 to 38
24
Thermal Diffusivity, mm2/s 57
4.5
Thermal Shock Resistance, points 8.3 to 14
21

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0.15 to 0.35
24.5 to 26.5
Copper (Cu), % 0 to 0.1
2.7 to 3.3
Iron (Fe), % 0 to 0.4
59.5 to 66.3
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
1.7 to 2.3
Nickel (Ni), % 0
4.7 to 6.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0