MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. C443.0 Aluminum

Both 5052 aluminum and C443.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
65
Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 22
9.0
Fatigue Strength, MPa 66 to 140
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 120 to 180
130
Tensile Strength: Ultimate (UTS), MPa 190 to 320
230
Tensile Strength: Yield (Proof), MPa 75 to 280
100

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 610
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
37
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
17
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 19 to 33
24
Strength to Weight: Bending, points 27 to 38
31
Thermal Diffusivity, mm2/s 57
58
Thermal Shock Resistance, points 8.3 to 14
10

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
89.6 to 95.5
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 2.2 to 2.8
0 to 0.1
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.25
4.5 to 6.0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.25