MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. EN 1.0045 Steel

5052 aluminum belongs to the aluminum alloys classification, while EN 1.0045 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is EN 1.0045 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
150
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 22
20
Fatigue Strength, MPa 66 to 140
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 180
330
Tensile Strength: Ultimate (UTS), MPa 190 to 320
530
Tensile Strength: Yield (Proof), MPa 75 to 280
330

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
50
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1190
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
93
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 19 to 33
19
Strength to Weight: Bending, points 27 to 38
18
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 8.3 to 14
17

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.27
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.4
96.7 to 100
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.7
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0