MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. EN 1.3536 Steel

5052 aluminum belongs to the aluminum alloys classification, while EN 1.3536 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is EN 1.3536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
200
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 190 to 320
660

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
440
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1190
55

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 19 to 33
23
Strength to Weight: Bending, points 27 to 38
22
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 8.3 to 14
19

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0.15 to 0.35
1.7 to 2.0
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
96 to 97.4
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.35
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0.15 to 0.45
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0