MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. EN 1.4852 Stainless Steel

5052 aluminum belongs to the aluminum alloys classification, while EN 1.4852 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
140
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 22
4.6
Fatigue Strength, MPa 66 to 140
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 190 to 320
490
Tensile Strength: Yield (Proof), MPa 75 to 280
250

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 610
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
6.9
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
19
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 19 to 33
17
Strength to Weight: Bending, points 27 to 38
18
Thermal Diffusivity, mm2/s 57
3.4
Thermal Shock Resistance, points 8.3 to 14
11

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0.15 to 0.35
24 to 27
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
29.6 to 40.9
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0