MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. EN AC-42100 Aluminum

Both 5052 aluminum and EN AC-42100 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
91
Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 1.1 to 22
3.4 to 9.0
Fatigue Strength, MPa 66 to 140
76 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 190 to 320
280 to 290
Tensile Strength: Yield (Proof), MPa 75 to 280
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 610
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
41
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.6
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 19 to 33
30 to 31
Strength to Weight: Bending, points 27 to 38
37 to 38
Thermal Diffusivity, mm2/s 57
66
Thermal Shock Resistance, points 8.3 to 14
13

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
91.3 to 93.3
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.19
Magnesium (Mg), % 2.2 to 2.8
0.25 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0 to 0.25
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.070
Residuals, % 0
0 to 0.1