MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. SAE-AISI 1045 Steel

5052 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1045 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is SAE-AISI 1045 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
180 to 190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 22
13 to 18
Fatigue Strength, MPa 66 to 140
220 to 370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 120 to 180
380 to 410
Tensile Strength: Ultimate (UTS), MPa 190 to 320
620 to 680
Tensile Strength: Yield (Proof), MPa 75 to 280
330 to 580

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1190
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
84 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
300 to 900
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 19 to 33
22 to 24
Strength to Weight: Bending, points 27 to 38
21 to 22
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 8.3 to 14
20 to 22

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
98.5 to 99
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0