MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. C46400 Brass

5052 aluminum belongs to the aluminum alloys classification, while C46400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 1.1 to 22
17 to 40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 120 to 180
270 to 310
Tensile Strength: Ultimate (UTS), MPa 190 to 320
400 to 500
Tensile Strength: Yield (Proof), MPa 75 to 280
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 650
900
Melting Onset (Solidus), °C 610
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
26
Electrical Conductivity: Equal Weight (Specific), % IACS 120
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Calomel Potential, mV -760
-400
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
76 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 19 to 33
14 to 17
Strength to Weight: Bending, points 27 to 38
15 to 17
Thermal Diffusivity, mm2/s 57
38
Thermal Shock Resistance, points 8.3 to 14
13 to 16

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
59 to 62
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.25
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0 to 0.1
36.3 to 40.5
Residuals, % 0
0 to 0.4