MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. N06045 Nickel

5052 aluminum belongs to the aluminum alloys classification, while N06045 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is N06045 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 22
37
Fatigue Strength, MPa 66 to 140
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 180
470
Tensile Strength: Ultimate (UTS), MPa 190 to 320
690
Tensile Strength: Yield (Proof), MPa 75 to 280
270

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 610
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
200
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 19 to 33
24
Strength to Weight: Bending, points 27 to 38
22
Thermal Shock Resistance, points 8.3 to 14
18

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0.15 to 0.35
26 to 29
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
21 to 25
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0