MakeItFrom.com
Menu (ESC)

5052 Aluminum vs. S44535 Stainless Steel

5052 aluminum belongs to the aluminum alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052 aluminum and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 46 to 83
170
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 22
28
Fatigue Strength, MPa 66 to 140
210
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Shear Strength, MPa 120 to 180
290
Tensile Strength: Ultimate (UTS), MPa 190 to 320
450
Tensile Strength: Yield (Proof), MPa 75 to 280
290

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 610
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.6
2.4
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 69
110
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 590
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 19 to 33
16
Strength to Weight: Bending, points 27 to 38
17
Thermal Diffusivity, mm2/s 57
5.6
Thermal Shock Resistance, points 8.3 to 14
15

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.15 to 0.35
20 to 24
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.4
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0