MakeItFrom.com
Menu (ESC)

5052-H32 Aluminum vs. ASTM A36 Carbon Steel

5052-H32 aluminum belongs to the aluminum alloys classification, while ASTM A36 carbon steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052-H32 aluminum and the bottom bar is ASTM A36 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
140
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 12
22
Fatigue Strength, MPa 120
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140
300
Tensile Strength: Ultimate (UTS), MPa 230
480
Tensile Strength: Yield (Proof), MPa 180
290

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
50
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
12
Electrical Conductivity: Equal Weight (Specific), % IACS 120
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1190
44

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
92
Resilience: Unit (Modulus of Resilience), kJ/m3 240
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 31
17
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 10
16

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.26
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
99.25 to 100
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0