MakeItFrom.com
Menu (ESC)

5052-O Aluminum vs. Annealed SAE-AISI 51B60

5052-O aluminum belongs to the aluminum alloys classification, while annealed SAE-AISI 51B60 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052-O aluminum and the bottom bar is annealed SAE-AISI 51B60.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47
200
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 22
21
Fatigue Strength, MPa 110
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 130
420
Tensile Strength: Ultimate (UTS), MPa 190
660
Tensile Strength: Yield (Proof), MPa 79
400

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
43
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1190
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
120
Resilience: Unit (Modulus of Resilience), kJ/m3 46
420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 28
22
Thermal Diffusivity, mm2/s 57
12
Thermal Shock Resistance, points 8.5
19

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.56 to 0.64
Chromium (Cr), % 0.15 to 0.35
0.7 to 0.9
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
97 to 97.8
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0