MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. 6008 Aluminum

Both 5056 aluminum and 6008 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
69
Elongation at Break, % 4.9 to 31
9.1 to 17
Fatigue Strength, MPa 140 to 200
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Shear Strength, MPa 170 to 240
120 to 170
Tensile Strength: Ultimate (UTS), MPa 290 to 460
200 to 290
Tensile Strength: Yield (Proof), MPa 150 to 410
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
620
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
49
Electrical Conductivity: Equal Weight (Specific), % IACS 99
160

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
76 to 360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 30 to 48
21 to 29
Strength to Weight: Bending, points 36 to 50
28 to 35
Thermal Diffusivity, mm2/s 53
77
Thermal Shock Resistance, points 13 to 20
9.0 to 13

Alloy Composition

Aluminum (Al), % 93 to 95.4
96.5 to 99.1
Chromium (Cr), % 0.050 to 0.2
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
0 to 0.35
Magnesium (Mg), % 4.5 to 5.6
0.4 to 0.7
Manganese (Mn), % 0.050 to 0.2
0 to 0.3
Silicon (Si), % 0 to 0.3
0.5 to 0.9
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15