MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. 7204 Aluminum

Both 5056 aluminum and 7204 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
70
Elongation at Break, % 4.9 to 31
11 to 13
Fatigue Strength, MPa 140 to 200
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Shear Strength, MPa 170 to 240
130 to 220
Tensile Strength: Ultimate (UTS), MPa 290 to 460
220 to 380
Tensile Strength: Yield (Proof), MPa 150 to 410
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
39
Electrical Conductivity: Equal Weight (Specific), % IACS 99
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 9.0
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
110 to 710
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
47
Strength to Weight: Axial, points 30 to 48
21 to 36
Strength to Weight: Bending, points 36 to 50
28 to 40
Thermal Diffusivity, mm2/s 53
58
Thermal Shock Resistance, points 13 to 20
9.4 to 16

Alloy Composition

Aluminum (Al), % 93 to 95.4
90.5 to 94.8
Chromium (Cr), % 0.050 to 0.2
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 0.35
Magnesium (Mg), % 4.5 to 5.6
1.0 to 2.0
Manganese (Mn), % 0.050 to 0.2
0.2 to 0.7
Silicon (Si), % 0 to 0.3
0 to 0.3
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants