MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. 851.0 Aluminum

Both 5056 aluminum and 851.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is 851.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
69
Elongation at Break, % 4.9 to 31
3.9 to 9.1
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 290 to 460
130 to 140

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
360
Specific Heat Capacity, J/kg-K 910
850
Thermal Conductivity, W/m-K 130
180
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
46
Electrical Conductivity: Equal Weight (Specific), % IACS 99
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 9.0
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1140

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
45
Strength to Weight: Axial, points 30 to 48
12 to 13
Strength to Weight: Bending, points 36 to 50
19 to 20
Thermal Diffusivity, mm2/s 53
69
Thermal Shock Resistance, points 13 to 20
6.1 to 6.3

Alloy Composition

Aluminum (Al), % 93 to 95.4
86.6 to 91.5
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0.7 to 1.3
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 4.5 to 5.6
0 to 0.1
Manganese (Mn), % 0.050 to 0.2
0 to 0.1
Nickel (Ni), % 0
0.3 to 0.7
Silicon (Si), % 0 to 0.3
2.0 to 3.0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.3