MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. AISI 440C Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
2.0 to 14
Fatigue Strength, MPa 140 to 200
260 to 840
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 170 to 240
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 290 to 460
710 to 1970
Tensile Strength: Yield (Proof), MPa 150 to 410
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
870
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
39 to 88
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
26 to 71
Strength to Weight: Bending, points 36 to 50
23 to 46
Thermal Diffusivity, mm2/s 53
6.0
Thermal Shock Resistance, points 13 to 20
26 to 71

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0.050 to 0.2
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
78 to 83.1
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants