MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. AWS BNi-9

5056 aluminum belongs to the aluminum alloys classification, while AWS BNi-9 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 25
72
Tensile Strength: Ultimate (UTS), MPa 290 to 460
580

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Melting Completion (Liquidus), °C 640
1060
Melting Onset (Solidus), °C 570
1060
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 9.0
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
260

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 30 to 48
19
Strength to Weight: Bending, points 36 to 50
18
Thermal Shock Resistance, points 13 to 20
19

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.050 to 0.2
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
0 to 1.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0
Nickel (Ni), % 0
77.1 to 83.3
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5