MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. AWS E90C-B9

5056 aluminum belongs to the aluminum alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 4.9 to 31
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 290 to 460
710
Tensile Strength: Yield (Proof), MPa 150 to 410
460

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1180
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
25
Strength to Weight: Bending, points 36 to 50
23
Thermal Diffusivity, mm2/s 53
6.9
Thermal Shock Resistance, points 13 to 20
20

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.040
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0.050 to 0.2
8.0 to 10.5
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
84.4 to 90.9
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5