MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 1.3553 Steel

5056 aluminum belongs to the aluminum alloys classification, while EN 1.3553 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 1.3553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 290 to 460
720

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
540
Melting Completion (Liquidus), °C 640
1620
Melting Onset (Solidus), °C 570
1570
Specific Heat Capacity, J/kg-K 910
440
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
10
Electrical Conductivity: Equal Weight (Specific), % IACS 99
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 9.0
8.5
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
96

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 30 to 48
24
Strength to Weight: Bending, points 36 to 50
21
Thermal Diffusivity, mm2/s 53
6.4
Thermal Shock Resistance, points 13 to 20
21

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0.78 to 0.86
Chromium (Cr), % 0.050 to 0.2
3.9 to 4.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
80.7 to 83.7
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 0.4
Molybdenum (Mo), % 0
4.7 to 5.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
6.0 to 6.7
Vanadium (V), % 0
1.7 to 2.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0