MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 1.4658 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 4.9 to 31
28
Fatigue Strength, MPa 140 to 200
530
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
81
Shear Strength, MPa 170 to 240
580
Tensile Strength: Ultimate (UTS), MPa 290 to 460
900
Tensile Strength: Yield (Proof), MPa 150 to 410
730

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
4.5
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
240
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
1280
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
32
Strength to Weight: Bending, points 36 to 50
26
Thermal Diffusivity, mm2/s 53
4.3
Thermal Shock Resistance, points 13 to 20
24

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.1
0 to 1.0
Iron (Fe), % 0 to 0.4
50.9 to 63.7
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0