MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 1.4877 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
36
Fatigue Strength, MPa 140 to 200
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
79
Shear Strength, MPa 170 to 240
420
Tensile Strength: Ultimate (UTS), MPa 290 to 460
630
Tensile Strength: Yield (Proof), MPa 150 to 410
200

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.0
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 48
22
Strength to Weight: Bending, points 36 to 50
20
Thermal Diffusivity, mm2/s 53
3.2
Thermal Shock Resistance, points 13 to 20
15

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0.050 to 0.2
26 to 28
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
36.4 to 42.3
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0