MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 1.4886 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while EN 1.4886 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 1.4886 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
45
Fatigue Strength, MPa 140 to 200
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 170 to 240
400
Tensile Strength: Ultimate (UTS), MPa 290 to 460
580
Tensile Strength: Yield (Proof), MPa 150 to 410
300

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.0
5.4
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
220
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 48
20
Strength to Weight: Bending, points 36 to 50
19
Thermal Diffusivity, mm2/s 53
3.1
Thermal Shock Resistance, points 13 to 20
14

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.050 to 0.2
17 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
38.7 to 49
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.0
Nickel (Ni), % 0
33 to 37
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0