MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 1.4938 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
16 to 17
Fatigue Strength, MPa 140 to 200
390 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 170 to 240
540 to 630
Tensile Strength: Ultimate (UTS), MPa 290 to 460
870 to 1030
Tensile Strength: Yield (Proof), MPa 150 to 410
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
750
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
1050 to 1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
31 to 37
Strength to Weight: Bending, points 36 to 50
26 to 29
Thermal Diffusivity, mm2/s 53
8.1
Thermal Shock Resistance, points 13 to 20
30 to 35

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0.050 to 0.2
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
80.5 to 84.8
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants