MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 1.4980 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 4.9 to 31
17
Fatigue Strength, MPa 140 to 200
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
75
Shear Strength, MPa 170 to 240
630
Tensile Strength: Ultimate (UTS), MPa 290 to 460
1030
Tensile Strength: Yield (Proof), MPa 150 to 410
680

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
150
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
1180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 48
36
Strength to Weight: Bending, points 36 to 50
28
Thermal Diffusivity, mm2/s 53
3.5
Thermal Shock Resistance, points 13 to 20
22

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0.050 to 0.2
13.5 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
49.2 to 58.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0