MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN 2.4879 Cast Nickel

5056 aluminum belongs to the aluminum alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
3.4
Fatigue Strength, MPa 140 to 200
110
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 290 to 460
490
Tensile Strength: Yield (Proof), MPa 150 to 410
270

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 9.0
8.3
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
14
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 30 to 48
16
Strength to Weight: Bending, points 36 to 50
16
Thermal Diffusivity, mm2/s 53
2.8
Thermal Shock Resistance, points 13 to 20
13

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0.050 to 0.2
27 to 30
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
9.4 to 20.7
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0