MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. EN AC-51200 Aluminum

Both 5056 aluminum and EN AC-51200 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
67
Elongation at Break, % 4.9 to 31
1.1
Fatigue Strength, MPa 140 to 200
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
25
Tensile Strength: Ultimate (UTS), MPa 290 to 460
220
Tensile Strength: Yield (Proof), MPa 150 to 410
150

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 910
910
Thermal Conductivity, W/m-K 130
92
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
22
Electrical Conductivity: Equal Weight (Specific), % IACS 99
74

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 9.0
9.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 30 to 48
24
Strength to Weight: Bending, points 36 to 50
31
Thermal Diffusivity, mm2/s 53
39
Thermal Shock Resistance, points 13 to 20
10

Alloy Composition

Aluminum (Al), % 93 to 95.4
84.5 to 92
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 4.5 to 5.6
8.0 to 10.5
Manganese (Mn), % 0.050 to 0.2
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.3
0 to 2.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15