MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. Grade CW2M Nickel

5056 aluminum belongs to the aluminum alloys classification, while grade CW2M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is grade CW2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 4.9 to 31
23
Fatigue Strength, MPa 140 to 200
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
83
Tensile Strength: Ultimate (UTS), MPa 290 to 460
560
Tensile Strength: Yield (Proof), MPa 150 to 410
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 640
1520
Melting Onset (Solidus), °C 570
1460
Specific Heat Capacity, J/kg-K 910
430
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.0
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 30 to 48
18
Strength to Weight: Bending, points 36 to 50
17
Thermal Shock Resistance, points 13 to 20
16

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.050 to 0.2
15 to 17.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
15 to 17.5
Nickel (Ni), % 0
60.1 to 70
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.8
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0