MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. Nickel 625

5056 aluminum belongs to the aluminum alloys classification, while nickel 625 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
33 to 34
Fatigue Strength, MPa 140 to 200
240 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
79
Shear Strength, MPa 170 to 240
530 to 600
Tensile Strength: Ultimate (UTS), MPa 290 to 460
790 to 910
Tensile Strength: Yield (Proof), MPa 150 to 410
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 570
1290
Specific Heat Capacity, J/kg-K 910
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 9.0
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
260 to 490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 30 to 48
26 to 29
Strength to Weight: Bending, points 36 to 50
22 to 24
Thermal Diffusivity, mm2/s 53
2.9
Thermal Shock Resistance, points 13 to 20
22 to 25

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.050 to 0.2
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
0 to 5.0
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants