MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. Nickel 825

5056 aluminum belongs to the aluminum alloys classification, while nickel 825 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is nickel 825.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
34
Fatigue Strength, MPa 140 to 200
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Shear Strength, MPa 170 to 240
430
Tensile Strength: Ultimate (UTS), MPa 290 to 460
650
Tensile Strength: Yield (Proof), MPa 150 to 410
260

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 9.0
7.2
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 48
22
Strength to Weight: Bending, points 36 to 50
20
Thermal Diffusivity, mm2/s 53
2.9
Thermal Shock Resistance, points 13 to 20
17

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.2
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.2
19.5 to 23.5
Copper (Cu), % 0 to 0.1
1.5 to 3.0
Iron (Fe), % 0 to 0.4
22 to 37.9
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 46
Silicon (Si), % 0 to 0.3
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0