MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. SAE-AISI 1030 Steel

5056 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1030 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is SAE-AISI 1030 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 4.9 to 31
14 to 22
Fatigue Strength, MPa 140 to 200
210 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 170 to 240
330 to 360
Tensile Strength: Ultimate (UTS), MPa 290 to 460
530 to 590
Tensile Strength: Yield (Proof), MPa 150 to 410
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
77 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
230 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30 to 48
19 to 21
Strength to Weight: Bending, points 36 to 50
18 to 20
Thermal Diffusivity, mm2/s 53
14
Thermal Shock Resistance, points 13 to 20
17 to 19

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0.28 to 0.34
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
98.7 to 99.12
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0